Ranaviral disease in wild Australian amphibians

Fact Sheet

Introductory statement

Ranaviruses have been associated with disease outbreaks causing significant mortality and morbidity in wild amphibians, reptiles, and cultivated and wild fish (Gray and Chinchar 2015). Ranaviruses have been reported from most continents, including Australia (Hyatt et al. 2002; Weir et al. 2012). In 2008, ranaviral disease of amphibians was included as a notifiable list disease by the World Organisation for Animal Health (OIE; OIE 2016b). Amphibian ranaviral disease is considered an emerging infectious disease, as it is now detected over an increasing species and geographic range (Hemingway et al. 2009). Bohle iridovirus (BIV), a ranavirus, has been reported in amphibians in Australia. A recent online book on ranaviruses (Gray and Chinchar 2015) summarises current knowledge on taxonomy, ecology, immunity and diagnosis and readers are referred to this source for further information.

Aetiology

In amphibians, ranaviral disease is caused by several species of closely related double-stranded DNA viruses belonging to the genus *Ranavirus* in the family *Iridoviridae*. There are four other genera in the family: *Iridovirus* and *Chloridovirus* (insect viruses), and *Lymphocystivirus* and *Megalocytivirus* (marine and tropical fish viruses) (Pallister et al. 2007).

Natural hosts

Ranaviruses have been identified in a range of ectothermic\(^1\) vertebrates, including fish, amphibians (frogs, toads, salamanders) and reptiles (lizards, turtles, snakes). Some ranaviruses can infect a broad host range across all these taxa. Trans-taxon infection between fish and amphibians (Mao et al. 1999), and reptiles and amphibians is suggested by surveillance data from wild populations in the USA (Currylow et al. 2014), and by experimental infection (Brenes et al. 2014).

\(^1\) An animal that relies on external sources of heat: a “cold blooded” animal e.g. frogs, fish and reptiles.
World distribution

Amphibian ranaviruses have been reported from many countries and regions including Asia, North America, Latin America and Europe (see Appendix 1).

The geographical range of Bohle iridovirus (BIV) (previously only reported in Australia) has recently expanded to the USA, where it caused high mortality in captive, endangered boreal toads (Anaxyrus boreas boreas) (Cheng et al. 2014). A virus isolated from a diseased leaf tailed gecko (Uroplatus fimbriatus) in Germany (Marschang et al. 2005) has been shown to be extremely closely related to BIV (Hick and Subramaniam 2016).

Occurrences in Australia

Data on the geographical origin and time of emergence or introduction of ranaviruses into Australia is not known. Only limited data are available on geographical and species range of ranaviruses in Australia.

Bohle iridovirus (BIV; a ranavirus) was isolated from metamorphs\(^2\) of captive ornate burrowing frogs (Limnodynastes ornatus), from Bohle in northern Queensland, where it caused mortality during and after metamorphosis (Speare and Smith 1992). Laboratory studies in Australia have also shown that both cane toads and native frogs are vulnerable to BIV (Speare 2000; Cullen and Owens 2002). Tadpoles appear the most susceptible, while juvenile frogs were more susceptible than adults. In challenge experiments, juvenile *L. caerulea*, *Litoria albovittata*, *Cyclorana brevipes* and *P. corieacea* were acutely susceptible whilst adult *L. rubella*, *L. inermis*, *L. caerulea*, *Cophixalus ornatus*, *Taudactylus acutirostris* and cane toads were less susceptible (Cullen and Owens 2002).

In Darwin, an irido-like virus was associated with disease and mortalities in captive magnificent tree frogs (*Litoria splendida*) and green tree frogs (*Litoria caerulea*) (Weir et al. 2012).

Wild, moribund adult *Litoria caerulea* from Townsville and captive juvenile red-backed toadlets (*Pseudophryne corieacea*) from Sydney have tested positive for BIV with PCR (Speare 2000; Cullen and Owens 2002).

While disease from ranavirus has not been frequently observed in wild amphibians in Australia, antibodies to ranaviruses have been detected widely in cane toads (*Rhinella marina*) in NSW, Qld and NT. The overall prevalence was 2.7% (range 0-18%). The identity of the ranavirus that induced the antibodies is unknown and no viruses were isolated from any individuals (Zupanovic et al. 1998).

Epizootic haematopoietic necrosis virus (EHNV), a ranavirus, was associated with disease and mortality in Australian wild redfin perch (*Perca fluviatilis*), but does not appear to infect wild amphibians.

Some ranaviruses not found in Australia have been shown to cause disease in native Australian amphibians in experimental challenges for example, Venezuelan Guatopo virus was able to kill *L. caerulea* in experimental trials (Australian Registry of Wildlife Health 2016). Green python Wamena virus (a ranavirus) was isolated in Australia, but originated from a python illegally imported from Indonesia (Hyatt et al. 2002).

Epidemiology

Globally, ranaviruses can cause >90% mortality in the wild during mass mortality events (Green et al. 2002).

However, ranaviruses have not been implicated in mass mortality events in Australia.

\(^2\) Amphibian larvae (e.g. tadpoles) in the process of turning into adults (e.g. frogs)
The epidemiology of ranavirus in amphibians in Australia is poorly understood but has been described in amphibians in North America and the United Kingdom, where epidemics associated with high mortality have been regularly reported (Wolf et al. 1968; Jancovich et al. 2001). In the UK, recurrent annual mass mortalities have occurred since the 1980s. High amphibian mortality due to ranavirus in South America has also been described (Fox et al. 2006). Risk is believed to increase with urbanisation and anthropogenic change to amphibian environments (North et al. 2015).

Tadpoles, metamorphs and juvenile frogs appear more susceptible to ranaviral disease than adult amphibians, but disease can occur in all life stages (Cullen and Owens 2002; Green et al. 2002). Detailed information on mortality rate, incubation period and transmission is available for Ambystoma tigrinum [tiger salamander] virus (ATV):

Mortality rate: In the wild, most animals infected with ATV die, usually within 8–14 days. However, larvae leaving the ponds to overwinter as juveniles can be positive for ATV without any signs of infection for more than 5 months (Brunner et al. 2004). Brunner et al. (2005) report that ATV had a mortality rate of 88.1% in a laboratory trial. In another study, all frogs that were experimentally infected with UK ranavirus died with systemic haemorrhage 6-8 days after inoculation (Cunningham et al. 2007). Mortality in captive boreal toads with BIV infection was 91% (Cheng et al. 2014).

Incubation period: Experimentally, the inoculation period appears to depend on host characteristics and the dose of inoculation. In one experiment involving ATV, the number of days before clinical signs appeared ranged from 10-30 days, while time to death ranged from 15-35 days. The time to death after the onset of signs was typically short, between 3-10 days (Brunner et al. 2005).

Transmission: ATV is efficiently transmitted via direct contact between animals (bumping, biting and cannibalism), as well as by necrophagy, and indirectly via water and fomites (Collins et al. 2004; Brunner et al. 2005; Brunner et al. 2007). Salamander larvae become infectious soon after ATV exposure, while their ability to infect increases with time. In the wild, ATV appears to be reintroduced to ponds each year by adults returning from terrestrial refugia to breed, and from sub-lethally infected dispersing juveniles (Brunner et al. 2004). Indirect transmission of ATV (e.g. from infected water to susceptible larvae) can occur, presumably via blood, exudates, or other tissues shed into the environment (Jancovich et al. 2001). In Canada, an FV3 (frog virus 3)-like ranavirus infects multiple species in amphibian communities. The high prevalence in salamanders implicates them as hosts and also reservoirs for this virus (Duffus et al. 2008). Horizontal transmission through exposure to infected pond water is the most likely route of infection to sympatric anurans.

Some ranaviruses, including BIV, are environmentally resistant and can remain infectious for long periods in certain environments (La Fauce et al. 2012). Studies with EHNV showed that it remained infective in water and after drying for over 100 days at 15 °C (Langdon 1989). Heating to 60 °C for 15 minutes or 40 °C for 24 hours inactivated the virus.

Clinical signs and gross pathology

Clinical signs of acute ranaviral disease are seen in tadpoles, metamorphs, juveniles and adults. In general, tadpoles and metamorphs exhibit decreased activity, ascites, focal haemorrhages and death. Adults exhibit decreased activity, skin ulceration, focal and systemic haemorrhages and death (Jerrett et al. 2015; Australian Registry of Wildlife Health 2016).

For BIV, clinical signs in the original epidemic included oedema of subcutaneous tissue, especially around the jaw and head, with the tongue protruding. Subcutaneous haemorrhages occurred on the ventral abdomen, inguinal areas and lower jaw (R. Speare, unpub. data).
Overseas, the UK ranavirus in common frogs (*Rana temporaria*) causes two disease syndromes. The first (Ulcerative Syndrome; US) is characterised by skin ulceration, while the second (Haemorrhagic Syndrome; HS) is characterised by systemic haemorrhage. HS usually presents with large numbers of moribund or moribund frogs being found at a site. US is a chronic disease, with frogs usually being found in poor body condition but alive, while deaths occur more slowly at one site over a period of weeks or months (Cunningham et al. 2008).

In North America, tadpoles and salamanders with ranaviral disease are lethargic and slow moving, swimming in circles with buoyancy problems and an inability to remain upright. They have haemorrhages or swollen areas on the ventral surface, near the gills and hind limbs. Older tadpoles may show signs of oedema. Haemorrhagic and necrotic foci are seen in many internal organs. Clinical signs of disease caused by ATV in captive tiger salamanders include a combination of loose or bloody faeces, anorexia, vomiting (occasionally bloody), small pale raised foci in the skin and cutaneous erosions and ulcers. Death occurred within 48 hours of developing bloody faeces. The skin of infected salamanders became dark and speckled and shed skin was fragmented. Some individuals produced thick, sticky mucus from the back and tail causing several to become stuck to their cages (Bollinger et al. 1999).

Diagnosis

Iridovirus infections (including ranavirus) cannot be diagnosed from clinical signs alone and infected amphibians may not show signs of disease. However, high mortality rates associated with haemorrhage, oedema, ascites or ulcers are suggestive of ranaviral disease. Histopathology showing severe necrosis of haematopoietic or other tissues is indicative and should be followed by more specific tests, including immunostaining, viral culture on cell monolayers, serology and molecular techniques, to identify the aetiological agent.

PCR analyses are required to distinguish among viral species and strains (Chinchar and Mao 2000). Transmission electron microscopy can classify the agent as a member of the *Iridoviridae*. ELISA and other serological tests can identify the genus *Ranavirus*.

Viral culture or PCR is needed to detect low level carrier infections. Marsh et al. (2002) developed tests based on variation of the major capsid protein (MCP) gene sequence to distinguish among important ranaviruses from the regions of Australia, Europe and America.

Real-time PCR is useful as a research and screening tool, with the potential, given further development, to become a sensitive and specific method for detection and differentiation of ranaviruses (Pallister et al. 2007). A high-throughput real-time PCR procedure validated for EHNV is suitable for sensitive detection of amphibian ranaviruses including surveillance for subclinical infection (Jaramillo et al. 2012).

Clinical pathology

Not reported.

Pathology

With BIV, typical pathology in natural and experimental infections included severe renal, pulmonary, hepatic, splenic and haemopoietic necroses and haemorrhages. Ranavirus immunoperoxidase stained many cell types in liver, lung, spleen, and in particular fibrocytes in extensive areas of swollen, necrotic dermis and glomeruli (Cullen et al. 1995; Australian Registry of Wildlife Health 2016). Jerrett et al. (2015) provide excellent illustrations of the histopathological changes and immunohistochemistry (IHC) staining in *Litoria splendida* and *L. caerulea*, with disease from a natural infection with Mahaffey Road virus (a BIV-like isolate). There was
widespread lymphoid and fibroblastic necrosis with vasculitis in a wide range of tissues and intracytoplasmic basophilic inclusion bodies were present in several cell types including hepatocytes.

Pathology in infected hatching fresh-water turtles *Elseya (Myuchelys) latisternum* and *Emydura krefftii* that were experimentally infected with BIV included focal necrosis and infiltration of granulocytes in the pancreas, liver and sub-mucosa of the intestine (Ariel et al. 2015). Similar pathology was described for adult boreal toads with disease caused by BIV (Cheng et al. 2014).

With UK ranavirus infections, histologic lesions include epidermal thickening and necrosis, with granulocytic inflammation, congestion and haemorrhage of internal tissues and intracytoplasmic inclusion bodies.

With North American ranaviruses, histological changes are similar to BIV, with widespread necrosis and haemorrhages in haemopoietic and other tissues. Basophilic intracytoplasmic inclusion bodies may be found in the liver or epidermis. Necrosis in the spleen, renal myeloid cells and glomeruli is typical (Miller et al. 2015).

Differential diagnoses

The only other disease with similar clinical signs that causes mass die-offs in wild adult amphibian populations is chytridiomycosis, caused by infection with *Batrachochytrium dendrobatidis*. Clinical signs include ventral reddening and occasionally skin ulcers. Frogs with severe chytridiomycosis are easily diagnosed by histology to detect spherical sporangia of *B. dendrobatidis* in the epidermis. Bacteria septicaemia (“red-leg”) occurs in captivity, with similar clinical signs and gross pathology.

Laboratory diagnostic specimens

For laboratory diagnosis of ranaviral disease in dead animals, fresh or frozen carcasses, fresh or frozen tissues (e.g. spleen or kidney) and tissues fixed in 10% formalin should be submitted. If it is not possible to transport fresh/frozen tissues, samples should be fixed in 70% ethyl alcohol and submitted in addition to formalin fixed tissues (Australian Registry of Wildlife Health 2016).

For screening healthy animals, molecular tests of liver tissue can detect the presence of ranavirus; however, this method is lethal (Pearman and Garner 2005). In salamanders, non-lethal tail clips can be tested for ranavirus (Brunner et al. 2004). Although toe-clips have been shown to yield sufficient DNA for PCR tests they do not reflect the location of subclinical ranaviral infection and are not validated for this purpose (St-Amour and Lesbarrères 2007). Non-lethal tests are less sensitive than testing of internal organs (Greer and Collins 2007).

Laboratory procedures

Testing can be done through the CSIRO Australian Animal Health Laboratory. Submission is generally through the state or territory diagnostic laboratory. See section ‘Diagnosis’. Tests are available at the University of Sydney, co-host for the OIE reference laboratory for ranavirus infection of amphibians. Details of the laboratory diagnostic procedures that are used are provided in the OIE Manual of Diagnostic tests (OIE 2016a).

Treatment

Currently, there is no effective treatment for iridoviral diseases, including ranaviral disease.
Prevention and control

In the absence of effective antiviral drugs or vaccines, the best control strategy for ranaviruses is prevention. Infected animals should be quarantined to prevent transmission to healthy animals via food, faeces and water (Chinchar and Mao 2000).

When working with wild or captive amphibians, measures must be taken to minimise the risk of transmission or the exposure of amphibians to new strains of ranavirus. This is best achieved through careful hygiene control and disinfection of potential fomites between sites and animals (Hemingway et al. 2009). At the site level, equipment such as vehicles (boats, cars), traps, nets, boots and waders should be mechanically scrubbed and disinfected.

Common disinfectants (70% ethanol, 70% isopropyl alcohol, 10% household bleach) inactivate ranaviruses if applied liberally, for sufficient time, and in conjunction with mechanical scrubbing (Brunner and Sesterhenn 2001). A dilute bleach solution is effective and inexpensive, but must be used with care for aquatic organisms (Speare et al. 2004) and preferably at a known final working concentration. Ethanol (70%) is effective against EHNV (Langdon, 1989) and can inactivate ranaviruses if given sufficient time or if used to flame equipment (Brunner and Sesterhenn 2001). Quaternary compounds are also effective and are less corrosive than bleach; however, careful rinsing is required to remove soapy residues (Hemingway et al. 2009). Any disinfectant must be applied for the specified amount of time to be effective (Speare et al. 2004). Glutaraldehyde and artificially generated ultraviolet light are also effective disinfectants (Australian Registry of Wildlife Health 2016). Bleach (sodium hypochlorite) used at 3% final concentration and 1% Virkon® were effective at inactivating an amphibian ranavirus after 1 min exposure time and a 2% chlorhexidine product (Nolvasan®) provided a 10³-fold reduction in ranavirus infectivity (Bryan et al. 2009). For disinfection using heat, appropriate temperature, application time and moist environment are essential. Residual infectivity in BIV was retained after exposure to 60°C for 5 min and 56°C for 1 h (La Fauce et al. 2012).

Surveillance and management

Ranavirus is an OIE-listed disease (OIE 2016b). Information on the disease, including epidemiology and surveillance is available in the OIE Aquatic Animal Health Manual www.oie.int/international-standard-setting (OIE 2016a). It has been recommended that the risk of importation could be more adequately addressed via the application of validated real-time PCR procedures and risk based surveillance methodology to regulate animals moving within trade systems and for mixing in captive conservation collections (Marsh et al. 2002). Gray and Chinchar (2015) provide recommendations for surveillance and risk assessment for ranaviruses. Management strategies to control amphibian diseases can be found on the Amphibian Diseases Homepage, which is hosted by the ARWH (http://arwh.org/sites/default/files/files-uploads/Ranaviruses%20in%20Amphibians.pdf).

3 A final working concentration for sodium hypochlorite (household bleach) may have variable concentration. The available chlorine for a calculated final concentration may be less than expected for some sample matrices if biological load is not considered; see info from Bryan et al. (2009) http://www.int-res.com/articles/dao2009/84/d084p089.pdf.
Statistics

Wildlife disease surveillance in Australia is coordinated by Wildlife Health Australia. The National Wildlife Health Information System (eWHIS) captures information from a variety of sources including Australian government agencies, zoo and wildlife parks, wildlife carers, universities and members of the public. Coordinators in each of Australia’s states and territories report monthly on significant wildlife cases identified in their jurisdictions. NOTE: access to information contained within the National Wildlife Health Information System dataset is by application. Please contact admin@wildlifehealthaustralia.com.au. There is one report of ranavirus in a group of captive tree frogs in eWHIS (Weir et al. 2012). WHA is keen to receive other reports of the occurrence of ranaviruses in Australia.

Research

The CSIRO Australian Animal Health Laboratory maintains an iridovirus reference collection and can undertake a range of diagnostic tests. The main research group in Australia is led by Prof. Richard Whittington at the OIE Reference Laboratory for Infection with Ranavirus within the Faculty of Veterinary Science, Camden, NSW (+61 2 9351 1619).

Research focus should include investigating the risk and consequences of ranaviral disease emergence as well as the introduction of new ranaviruses into Australia. Basic risk assessment for Australian amphibians with respect to ranaviral infection is recommended, given the role that ranaviruses have played in causing mass mortality events and population declines in other parts of the world. This might include experimental transmission of UK and US ranaviruses to Australian species to determine their susceptibility and studies to predict, in Australia, the potential geographic range of ranaviruses known to cause mass mortality events overseas. The epidemiology of ranaviruses in the Australian context is poorly understood, and warrants further focus.

Surveys of the number of potential host species, ranaviruses and their distribution are recommended. Testing of archived specimens may help to determine for how long ranaviruses have been present in Australia.

Human health implications

Ranaviruses will not infect humans since they will not multiply above 33°C.

Conclusions

Ranaviral disease in Australian amphibians has been detected sporadically but might become increasingly important with environmental change and the keeping of amphibians in captivity. Ranaviruses appear to be widespread (as suggested by the survey for antibodies in cane toads) and molecular epidemiology suggests that these viruses have the ability to spread worldwide. There is concern around the potential introduction into Australia of highly pathogenic ranavirus species that have caused recurrent mortality events in other countries. Strict quarantine, testing and biosecurity are the management options of choice to reduce the risk to Australia.
Appendix 1: Ranaviruses reported from amphibians

The table is adapted from that in the ARWH document http://arwh.org/sites/default/files/files-uploads/Ranaviruses%20in%20Amphibians.pdf

Note, Table 2 in Duffus et al. (2015) provides an up-to-date and comprehensive summary of this information.

<table>
<thead>
<tr>
<th>Location</th>
<th>Virus</th>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>Tiger frog virus (TFV)</td>
<td>Tiger frog (Rana tigrina)</td>
<td>He et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>Rana grylio virus (RGV)</td>
<td>Rana grylio</td>
<td>Zhang et al. (2001)</td>
</tr>
<tr>
<td>Thailand</td>
<td>Rana tigrina virus (RTV)</td>
<td>Tiger frog (Rana tigrina)</td>
<td>Essbauer and Ahne (2001)</td>
</tr>
<tr>
<td>Australia</td>
<td>Bohle iridovirus (BIV)</td>
<td>Ornate burrowing frog (Limnodynastes ornatus)</td>
<td>Speare and Smith (1992)</td>
</tr>
<tr>
<td></td>
<td>Green tree frog (Litoria caerulea)</td>
<td>Speare (2000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cane toad (Rhinella marina)</td>
<td>Speare (2000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mahaffey Road ranavirus (MHRV)</td>
<td>Green tree frog Magnificent tree frog (Litoria splendida)</td>
<td>Weir et al. (2012)</td>
</tr>
<tr>
<td>UK</td>
<td>Rana United Kingdom virus (RUK)</td>
<td>Common frog (Rana temporaria)</td>
<td>Cunningham et al. (1996); (Hyatt et al. 2000)</td>
</tr>
<tr>
<td></td>
<td>Rana esculenta iridovirus (REIR)</td>
<td>Edible frog (Rana esculenta)</td>
<td>Ahne et al. (1998)</td>
</tr>
<tr>
<td></td>
<td>Bufo United Kingdom virus (BUK)</td>
<td>Common toad (Bufo bufo)</td>
<td>Essbauer and Ahne (2001)</td>
</tr>
<tr>
<td>Canada</td>
<td>Regina ranavirus (RRV)</td>
<td>Tiger salamander (Ambystoma tigrinum diabolii)</td>
<td>Bollinger et al. (1999)</td>
</tr>
<tr>
<td>USA</td>
<td>Tadpole edema virus (TEV)</td>
<td>North American bullfrog (Lithobates catesbeianus)</td>
<td>Wolf et al. (1968)</td>
</tr>
<tr>
<td></td>
<td>Frog virus 3 (FV3), (FV1, 2, 9-23), LT1-LT4</td>
<td>Leopard frog (Rana pippins)</td>
<td>Hyatt et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>Ambystoma tigrinum virus (ATV)</td>
<td>Tiger salamander</td>
<td>Jancovich et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>T6-20</td>
<td>Eastern newt (Diemictylus viridescens)</td>
<td>Essbauer and Ahne (2001)</td>
</tr>
<tr>
<td></td>
<td>NVT</td>
<td>Notophthalmus viridescens</td>
<td>Essbauer and Ahne (2001)</td>
</tr>
<tr>
<td></td>
<td>TEV, Redwood virus</td>
<td>Red legged frog (Rana aurora)</td>
<td>Essbauer and Ahne (2001)</td>
</tr>
<tr>
<td></td>
<td>FV1-3, FV9-23</td>
<td>Leopard frog (Rana pippins)</td>
<td>Essbauer and Ahne (2001)</td>
</tr>
<tr>
<td></td>
<td>Xenopus virus (XV)</td>
<td>African clawed toad (Xenopus laevis)</td>
<td>Essbauer and Ahne (2001)</td>
</tr>
<tr>
<td></td>
<td>Zoo rana virus (Bohle-like iridovirus)</td>
<td>Boreal toads (Anaxyrus boreas boreas)</td>
<td>Cheng et al. (2014)</td>
</tr>
<tr>
<td>Venezuela</td>
<td>Guatopo virus (GV)</td>
<td>Cane toad</td>
<td>Hyatt et al. (2000)</td>
</tr>
</tbody>
</table>

References and other information

Acknowledgements

We thank the following people who have had input into this document: Lee Berger, Richard Whittington, Paul Hick, Kris Murray, Robert Johnson, WHA wildlife coordinators and Rupert Woods.

Updated: December 2016

To provide feedback on this fact sheet

We are interested in hearing from anyone with information on this condition in Australia, including laboratory reports, historical datasets or survey results that could be added to the National Wildlife Health Information System. If you can help, please contact us at admin@wildlifehealthaustralia.com.au.

Wildlife Health Australia would be very grateful for any feedback on this fact sheet. Please provide detailed comments or suggestions to admin@wildlifehealthaustralia.com.au. We would also like to hear from you if you have a particular area of expertise and would like to produce a fact sheet (or sheets) for the network (or update current sheets). A small amount of funding is available to facilitate this.

Disclaimer

This fact sheet is managed by Wildlife Health Australia for information purposes only. Information contained in it is drawn from a variety of sources external to Wildlife Health Australia. Although reasonable care was taken in its preparation, Wildlife Health Australia does not guarantee or warrant the accuracy, reliability, completeness, or currency of the information or its usefulness in achieving any purpose. It should not be relied on in place of professional veterinary consultation. To the fullest extent permitted by law, Wildlife Health Australia will not be liable for any loss, damage, cost or expense incurred in or arising by reason of any person relying on information in this fact sheet. Persons should accordingly make and rely on their own assessments and enquiries to verify the accuracy of the information provided.