EXOTIC
Ferlavirus
(previously OPMV)
and Australian reptiles

Fact sheet

Introductory statement
Ferlavirus infections have caused large mortalities in overseas captive snake collections. The status of this virus and its role in disease of Australian snakes still needs to be clarified. As ferlavirus infection cannot be diagnosed on histology alone research is required to develop a reliable ante mortem test that will accurately detect infected snakes and determine whether or not the virus exists in Australian snake populations.

Aetiology
Ferlavirus is an enveloped RNA virus 146 to 321 nm in diameter. It grows optimally at 30°C and has restricted growth at 37°C (Lunger and Clark, 1979).

Natural hosts
Ferlavirus has been isolated from all the major snake families including elapids, boids, colubrids, viperids, and crotalids (Bronson and Cranfield, 2006).

World distribution
The disease has been described from snakes in Europe, the Americas and the Canary Islands but is likely distributed worldwide.
Occurrences in Australia

Anectodally the disease is likely present in Australia, but this has not been confirmed (Hyndman pers. comm., Rose pers. comm.).

Epidemiology

The shedding patterns of feravirus are unknown (Jacobson and Origgi, 2007). There are no controlled studies to support any claims regarding the existence of persistently-infected shedding state or of snakes that mount an appropriate immune response and have cleared the infection (Hyndman et al. 2013).

It is reasonable to assume that feravirus can be transmitted between snakes by both oral secretions and cloacal excretions. Feravirus has not yet been isolated, or detected by PCR, from fomites or ectoparasites (Hyndman et al. 2013). There are currently no reports concerning vertical transmission of feravirus (Pasmans et al. 2008).

The incubation period of feravirus in naturally acquired infections is unknown. There are claims that the incubation period for feravirus may be as short as 21 days (Hernandez-Divers, 2006) but will generally exceed 90 days (Hernandez-Divers, 2006; Ritchie, 2006). However, these claims are not supported by controlled studies (Hyndman et al. 2013).

Clinical signs

Clinical signs are variable. In the peracute form the affected snake may simply be found dead with no previous signs. Acutely affected snakes may display anorexia, regurgitation, respiratory signs including gaping and blood or a brownish discharge emerging from the glottis, and terminally, neurological signs such as head tremors, flaccid paralysis or convulsions. Chronically affected snakes generally have a history of anorexia and regurgitation and are weak and emaciated and have poor muscle tone. Over a period of several months they may develop diarrhoea and respiratory and neurological signs (Bronson and Cranfield, 2006; Hyndman et al. 2013).

Diagnosis

Diagnosis is based on a combination of histological lung changes and virus isolation. Negative staining electron microscopy of faeces or lung washes can be used to find virus and immunoperoxidase and immunofluorescence stains are also available (Bronson and Cranfield, 2006).

A haemagglutination inhibition test is available in the USA. Seroconversion takes approximately eight weeks. Antibody levels decline after approximately six months. A single positive result is indicative of exposure only. To demonstrate recent infection a greater than two fold increase in titre needs to be demonstrated over a two to three month time period (Jacobson et al. 1999). However, a recent publication cast doubt on the accuracy of this test, with different laboratories yielding different results using the same blood samples (Allender et al. 2007).

Commerically available diagnostic tests - The diagnostic tests for ferlavirus that are available to the clinical practitioner are restricted to haemagglutination inhibition (HI), polymerase chain reaction (PCR) and virus isolation. Presently these tests are only offered on a commercial basis in Europe, the United States of America, and Australia. PCR is available through Tim Hyndman at the School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150. Tests have not been validated at this time (Hyndman et al. 2013).

Pathology

A recent review mentions the most commonly seen gross pathological changes: pulmonary congestion or oedema, haemorrhagic pneumonia, free blood in the oral cavity or coelom, mucoid or caseous exudate in the lung, diffuse to focal accumulations of caseous necrotic debris in pulmonary tissue (Hyndman et al. 2013).

Histological lesions may be classified according to organ systems (Hyndman et al. 2013):

- **Respiratory** - The lung is usually full of macrophages, exudate and cellular debris. Epithelial cells undergo hypertrophy, hyperplasia and metaplasia. Pale eosinophilic intracytoplasmic inclusion bodies are occasionally detected within these cells. Pulmonary septa are thickened with oedema fluid and infiltrated with mixed inflammatory cells. Giant cells are occasionally seen. Varying amounts of mixed inflammatory cells occur in the interstitium.
- **Neurological** - Occasionally demyelination, degeneration of axon fibres and ballooning of axon sheaths occurs in the brainstem and upper spinal cord. Eosinophilic intracytoplasmic inclusions have been found in glial cells, while eosinophilic intranuclear inclusions have been seen in neurons. Perivascular cuffing in the brain may also occur. Lymphohistiocytic neuritis of the oesophagus has also been recorded.
- **Other tissues** - If the pancreas is grossly enlarged hyperplasia of acinar cells and terminal duct epithelium is usually detected microscopically. Pancreatitis, pancreatic necrosis and/or fibrosis may also occur. Intracytoplasmic inclusion bodies may occur in the liver. Pyogranulomatous hepatitis has been reported in some cases (Jacobson, 2007; Hyndman et al. 2013).

Differential diagnoses

Differential diagnoses include infectious agents and toxins that can cause respiratory or neurological sins, or chronic debilitation.

Laboratory diagnostic specimens

- Cloacal, oral and combined oral/cloacal swabs
- Fresh samples of brain, lung, liver and kidney
- Archival formalin-fixed paraffin-embedded tissue
 - Sample quality is often badly degraded so negative results carry less weight than positive results

Sampling protocol

- Oral swabs
Moisten a cotton-tipped sterile swab with sterile saline. Rub the swab around the mouth paying particular attention to the glottis. If possible, advance the swab down into the trachea before sampling the rest of the mouth.

- Cloacal swabs
 - Moisten a cotton-tipped sterile swab with sterile saline. Advance the swab through the vent and swab the colon and cloaca.

- Combined oral/cloacal swabs
 - Moisten a cotton-tipped sterile swab with sterile saline. Swab as for the oral swab and then, using the same swab, sample as for the cloacal swab.

- All swabs
 - Break off swab-tip into small sterile container (e.g. plain blood tube) where no more than 5mLs of sterile saline would cover the swab even when the container is inverted. The combined oral/cloacal swab is preferred. Do not use bacterial culture swabs as these will facilitate bacterial growth.

- Fresh tissue samples
 - Small samples (pinhead size) of (in order of preference) brain, kidney, lung and liver can be collected into small sterile containers, and like the swabs, immersed in sterile saline. Pooling these samples is preferred to submitting them individually.

Laboratory procedures

PCR testing, gross pathology and histopathology.

Treatment

There is no treatment.

Prevention and control

Snakes should be quarantined for a minimum of 90 days. Good mite control is advised. Sodium hypochlorite is an effective disinfectant for cleaning utensils and cages that have contained infected snakes (Bronson and Cranfield, 2006).

No vaccine is currently available. A vaccine trial demonstrated seroconversion in western diamondback rattlesnakes (*Crotalus atrox*) when treated with a killed paramyxovirus vaccine. However, results were variable and transient, 17 of the 18 snakes having become seronegative 296 days after vaccination (Jacobson et al. 1991).

Surveillance and management

Wildlife disease surveillance in Australia is coordinated by the Wildlife Health Australia. The National Wildlife Health Information System (eWHIS) captures information from a variety of sources including Australian government agencies, zoo and wildlife parks, wildlife carers, universities and members of the public. Coordinators in each of Australia’s States and Territories report monthly on significant wildlife cases identified in their jurisdictions. NOTE: access to information contained within the National Wildlife Health Information System dataset is by application. Please contact admin@wildlifehealthaustralia.com.au.
Statistics

Limited information is available in the National Wildlife Health Surveillance Database. There are no confirmed cases of ferlavirus reported in eWHIS but there is mention of a suspect case from Western Australia. WHA would be very interested in receiving any reports of suspected or confirmed cases in Australian reptiles.

Research

As ferlavirus infection cannot be diagnosed on histology alone research is required to develop a reliable ante mortem test that will accurately detect infected snakes and determine whether or not the virus exists in Australian snake populations. Research focusing on this problem is currently being conducted through Murdoch University, Western Australia. There are still important gaps in the knowledge concerning these viruses and their associated infections. For example, the incubation periods and shedding kinetics of the paramyxoviruses from reptilian hosts, and the survivability of the virus once outside the host, are all poorly understood and as consequences, choosing appropriate quarantine periods, proper sampling times and suitable sample types is problematic. Researchers need to identify these gaps of knowledge and describe how ferlavirus behaves in the host and the environment (Hyndman et al. 2013).

Human health implications

It is unlikely that ferlavirus would pose a serious zoonotic risk to human health (Hyndman, 2013).

Conclusions

Given the large snake mortalities seen in overseas collections affected by ferlavirus the potential exists for Australian snakes to be similarly affected. To date this has not occurred but, in order to establish practical safeguards, the availability of accurate ante mortem testing is urgently required.

References and other information

Lunger PD and Clark HF. Morphogenesis of fer-de-lance virus (FDLV) cultured at optimal (30 C) cell growth temperature. *Journal of Comparative Pathology* 1979;89:265-279.

Acknowledgements

The following people have had input into this document: Peter Holz, Robert Johnson and Rupert Woods.

Updated: 27 June 2013

To provide feedback on this fact sheet

We are interested in hearing from anyone with information on this condition in Australia, that could be added to the National Wildlife Health Information System. If you can help, please contact us at admin@wildlifehealthaustralia.com.au.

Wildlife Health Australia would be very grateful for any feedback on this fact sheet. Please provide detailed comments or suggestions to admin@wildlifehealthaustralia.com.au. We would also like to hear from you if you have a particular area of expertise and would like to produce a fact sheet (or sheets) for the network (or update current sheets). A small amount of funding is available to facilitate this.

Disclaimer

This fact sheet is managed by Wildlife Health Australia for information purposes only. Information contained in it is drawn from a variety of sources external to Wildlife Health Australia. Although reasonable care was taken in its preparation, Wildlife Health Australia does not guarantee or warrant the accuracy, reliability, completeness, or currency of the information or its usefulness in achieving any purpose. It should not be relied on in place of professional veterinary consultation. To the fullest extent permitted by law, Wildlife Health Australia will not be liable for any loss, damage, cost or expense incurred in or arising by reason of any person relying on information in this fact sheet. Persons should accordingly make and rely on their own assessments and enquiries to verify the accuracy of the information provided.