Exotic

Australian Seals and Influenza Viruses

Fact Sheet

Introductory Statement

Influenza viruses can cause disease in a wide variety of avian and mammalian hosts and are recognized as significant human pathogens. Influenza A viruses have caused significant mortality events in seals in the northern hemisphere (summarised in Fereidouni et al. 2014) but have not been detected in seals in Australian waters. Influenza outbreaks may have population level effects on vulnerable seal colonies and may be a zoonotic disease risk. Influenza may spillover into seals from water birds and the role of seals in influenza disease ecology is not well understood. Conservation management of Australian seals depends on a sound knowledge of all factors which may have an influence at a population level, including infectious disease. Assessment of the risk and consequence of pathogen introduction to Australian seals will enable infectious disease threats to be incorporated into the larger management plan.

Aetiology

Influenza viruses belong to the family *Orthomyxoviridae* and are classified into three types: A, B and C. Influenza A viruses are further characterised according to the antigenic properties of their surface glycoproteins, haemagglutinin (H) and neuraminidase (N) (Webster et al. 1992). Influenza A viruses isolated from seals includes subtypes H7N7, H4N5, H3N3, H4N6, H1N1, H3N8 and H10N7 (Webster et al. 1981b; Geraci et al. 1982; Hinshaw et al. 1984; Callan et al. 1995; Anthony et al. 2012; Fereidouni et al. 2014; Bodewes et al. 2015). In early 2010, pandemic H1N1 swine influenza (which was the cause of widespread flu outbreaks in humans in 2009) was isolated from nasal swabs from northern elephant seals (*Mirounga angustirostris*) in California (Goldstein et al. 2013). In 2016 and 2017, highly pathogenic avian influenza (HPAI) H5N8 was detected in stranded gray seals (*Halichoerus grypus*) in Poland. The virus was closely related to avian H5N8 viruses circulating in Europe at the time (Shin et al. 2019) and was the first report of infection in marine mammals with HPAI.
Natural hosts

The natural hosts of influenza A viruses are wild, aquatic birds and the viruses usually do not cause clinical disease in these species. However, virus originating in these natural hosts can infect a wide range of domestic and wild avian and mammalian species and produce disease (Webster et al. 1992). Evidence of influenza A infection has been found in a wide range of seal species globally.

The natural host of influenza B viruses are humans. In 2000, an influenza B virus was isolated from two European harbour seals (*Phoca vitulina*) with respiratory disease (Osterhaus et al. 2000). Serological evidence of exposure to influenza B viruses has been found in South American fur seals (*Arctocephalus australis*) in Uruguayan waters (Blanc et al. 2009) and in gray and Caspian seals (*Phoca caspica*) in the northern hemisphere (Ohishi et al. 2002; Bodewes et al. 2013). It is speculated that gray seals may play a role as reservoirs for influenza B viruses (Bodewes et al. 2013).

World distribution

Influenza viruses have a world-wide distribution. In seals, isolation of influenza viruses or serologic evidence of their presence has been reported from North and South America, Japan, Europe, Canadian Arctic waters and the Caspian Sea (Callan et al. 1995; Nielsen et al. 2001; Ohishi et al. 2002; Fujii et al. 2007; Blanc et al. 2009; Goldstein et al. 2013).

Occurrences in Australia

There have been no reports of disease caused by influenza viruses in Australian seals. A serologic survey of Australian fur seals (*Arctocephalus pusillus doriferus*) in northern Bass Strait found no evidence of exposure to influenza A viruses (Lynch et al. 2011).

Epidemiology

The pathogenicity of influenza viruses varies between subtypes and strains and between host species. In seals, some influenza types have been associated with significant disease and epidemics causing mortality of up to 20% of the in-contact population (Geraci et al. 1982; Hinshaw et al. 1984; Callan et al. 1995; Anthony et al. 2012; Bodewes et al. 2015). However, infection with influenza A or B viruses may also produce no disease or mild morbidity. For example, respiratory disease in two harbor seals infected with an influenza B virus was of a moderate nature and some doubt existed as to whether the virus was the actual cause of the animals’ clinical signs (Osterhaus et al. 2000).

Avian species represent a major reservoir for influenza A viruses with the potential to infect seals. There is often close association between aquatic birds and seals at resting and breeding sites providing opportunities for virus transmission. The route of transmission from birds to seals is unknown but may be by both the faecal-oral and aerosol routes. In aquatic birds, influenza A viruses replicate in the gut and the faecal-oral route is thought to be the predominant means of transmission (Webster et al. 1978). Aerosol transmission is also possible in birds and is the predominant route for virus transmission during epidemics in mammalian species (Belser et al. 2010). There is evidence that some influenza viruses found in seal populations originated from humans (Ohishi et al. 2002) and presumably were transmitted to seals by aerosol. The incubation period of influenza viruses in seals is largely unknown but would be expected to vary with virus strain and subtype.
and the host species. In one outbreak it was estimated that the incubation period was in the order of three days or less (Geraci et al. 1982).

Influenza virus infection in seals was first reported from 1979 in north-eastern USA. Serosurveys of seal populations in the northern hemisphere showed no evidence of exposure to influenza virus in the 1970’s suggesting that the virus had probably been introduced to seals for the first time shortly before the 1979 epidemic (Webster et al. 1981b). Analyses of sera collected from 971 harbor seals showed a prevalence of antibodies to influenza B virus in 2% of the animals after 1995 and in none before 1995 (Osterhaus et al. 2000).

Clinical signs

Seals infected with pathogenic influenza A viruses present with signs of severe, acute pneumonia. Therefore animals may be observed to be in well-nourished condition but weak in their movements, lack coordination and be exhibiting respiratory distress (Geraci et al. 1982). Frothy white or bloody discharge may be observed at the mouth or nares. Subcutaneous emphysema, particularly of the cervical region is another commonly observed clinical sign. This results from air escaping from damaged lung tissue, through the thoracic inlet and into the subcutaneous tissues of the neck and back (Callan et al. 1995).

Diagnosis

Serologic evidence of exposure to influenza viruses can be provided by application of enzyme-linked immunosorbent assays (Ohishi et al. 2002). Definitive diagnosis of the presence of virus in tissues or swabs requires PCR and/or virus isolation.

Pathology

Seals infected with pathogenic influenza A viruses displayed histologic lesions of severe pneumonia characterised by necrotising bronchitis and bronchiolitis and haemorrhagic alveolitis (Geraci et al. 1982). Subcutaneous emphysema of the tissues of the neck and back were also observed.

Differential diagnoses

Infection with seal morbilliviruses can produce significant mortality events. Affected animals may demonstrate respiratory and CNS abnormalities and subcutaneous emphysema (Di Guardo et al. 2005). Coinfection with Mycoplasma sp. may exacerbate the severity of disease produced by influenza viruses in seals (Geraci et al. 1982). Some mycoplasmas may also act as primary pathogens and severe pneumonia has been observed in Californian sea lions (Zalophus californianus) infected with M. zalophi. Other bacteria capable of causing disease of the respiratory tract in seals include Mycobacterium pinnipedii (Cousins et al. 2003), Klebsiella pneumoniae (Castinel et al. 2007) and Nocardia sp. (Leger et al. 2009).

Laboratory diagnostic specimens

- Blood for serologic investigation
- Pharyngeal swabs from live animals for PCR and/or virus isolation
- Formalised tissues from dead animals including lung, brain, spleen, liver, kidney and lymph nodes
- Fresh tissues stored frozen at -70°C.
Laboratory procedures

- ELISA as screening serologic test
- Haemagglutination inhibition assay using reference influenza viruses as antigens
- PCR
- Virus isolation.

Treatment, prevention and control

There is no specific treatment for seals suffering from influenza infection. Animals suspected of suffering from severe influenza should be euthanized and thoroughly investigated.

The control of the introduction of influenza A virus from wild birds to seals is not possible. Seals diagnosed with influenza virus infection should be regarded as potentially infectious to humans (see below) and other mammals. Control of the human health risk should focus on use of appropriate personal protection equipment for people likely to be exposed to respiratory tract secretions from diseased animals.

Influenza viruses can survive for some hours outside the host in favourable environmental conditions (Bean et al. 1982). Therefore, infection via fomites should be considered when working with seals suspected as being infected with influenza. In addition, people with flu-like symptoms should be aware of the possibility of transmission of influenza virus from humans to seals.

Influenza viruses are sensitive to most antiseptics and washing of hands with chlorhexidine gluconate (antiseptic handwash) and chemical sterilisation of equipment should be practiced as a minimum standard after handling free-ranging marine mammals.

Surveillance and management

Wildlife disease surveillance in Australia is coordinated by Wildlife Health Australia. The National Wildlife Health Information System (eWHIS) captures information from a variety of sources including Australian government agencies, zoo and wildlife parks, wildlife carers, universities and members of the public. Coordinators in each of Australia’s States and Territories report monthly on significant wildlife cases identified in their jurisdictions. NOTE: access to information contained within the National Wildlife Health Information System dataset is by application. See the WHA website for more information: www.wildlifehealthaustralia.com.au/ProgramsProjects/eWHISWildlifeHealthInformationSystem.aspx#requests.

There are no cases of influenza-associated disease in seals listed on the National Wildlife Health Information System.

Increased surveillance of Australian seals for influenza viruses may be warranted if HPAI was detected in wild birds within the foraging, pupping or haul-out ranges of Australia seals. There is a national surveillance program for avian influenza viruses in wild birds in Australia.

Research

Key research questions focus on whether influenza viruses circulating within Australian seal populations or if there is evidence of previous exposure to these potential pathogens. Serological surveys of Australian free-living Australian seals are recommended.
Investigation of unusual mortality events in seals and exclusion of influenza virus infection in seals suffering from respiratory disease is also recommended.

Human health implications

There is no evidence of influenza viruses from seals causing severe disease in humans. However, an H7N7 subtype isolated from harbor seals was linked to conjunctivitis in in-contact workers, but did not spread from person to person (Webster et al. 1981a). Although disease was mild and infected people did not develop serum antibodies this instance highlights the potential of influenza viruses to cross between mammalian species. Therefore, at risk groups should be aware of disease issues associated with handling seals suffering from respiratory illness. These groups include staff working in facilities holding captive marine mammals particularly those that accept wild individuals for treatment and rehabilitation. Other groups potentially at risk are research scientists, wildlife officers and members of the public and wildlife care groups who assist at marine mammal strandings. Appropriate personal protection (gloves, protective clothing and mask), along with appropriate personal hygiene (see also Treatment, prevention and control) should be employed when conducting post mortem examinations on pinnipeds.

Conclusions

Influenza viruses have a world-wide distribution and can cause disease in a wide variety of avian and mammalian hosts. Influenza viruses have caused mortality events in seals in the northern hemisphere and Australian seal species are potentially at risk from this pathogen. There remains limited knowledge of the situation with respect to influenza viruses and seals in Australia. Influenza viruses should always be regarded as potential zoonoses so appropriate protective measures should be taken when handling seals exhibiting respiratory disease.

References and other information

Acknowledgements

We are extremely grateful to the many people who had input into this fact sheet and would specifically like to thank Michael Lynch, who developed the first version of this sheet.

Updated: March 2020

To provide feedback on this fact sheet

Wildlife Health Australia would be very grateful for any feedback on this fact sheet. Please provide detailed comments or suggestions to admin@wildlifehealthaustralia.com.au. We would also like to hear from you if you have a particular area of expertise and would like to produce a fact sheet (or sheets) for the network (or update current sheets). A small amount of funding is available to facilitate this.

Disclaimer

This fact sheet is managed by Wildlife Health Australia for information purposes only. Information contained in it is drawn from a variety of sources external to Wildlife Health Australia. Although reasonable care was taken in its preparation, Wildlife Health Australia does not guarantee or warrant the accuracy, reliability, completeness, or currency of the information or its usefulness in achieving any purpose. It should not be relied on in place of professional veterinary or medical consultation. To the fullest extent permitted by law, Wildlife Health Australia will not be liable for any loss, damage, cost or expense incurred in or arising by reason of any person relying on information in this fact sheet. Persons should accordingly make and rely on their own assessments and enquiries to verify the accuracy of the information provided.