Australian marine mammals and Brucella

Fact sheet

Introductory statement

Novel members of the genus Brucella have recently emerged as pathogens of various marine mammal species and as potential zoonoses. Brucella infections of terrestrial animals are a well-recognised cause of abortion and infertility and, consequently, of high economic concern to the domestic livestock industry. It is important, therefore, to define the likelihood of transmission and disease-causing potential of marine mammal Brucella species for humans and livestock, as well as for wildlife. This will enable public health agencies to define ‘at risk’ groups in the community and formulate risk management strategies aimed at preventing pathogen transfer. In addition, knowledge of the epidemiology of marine mammal brucellosis will be of interest to livestock industries, particularly those involved in export of beef products.

Aetiology

Marine strains of Brucella are genetically and biochemically distinct from other species in this genus and isolates from cetaceans and seals (pinnipeds) have been proposed as two new species, respectively, B. ceti and B. pinnipedialis (Foster et al. 2007; Dawson et al. 2008b).

Natural hosts

Microbiological and serological evidence suggest that cetacean species are the natural hosts of B. ceti and pinniped species the natural hosts for B. pinnipedialis. While pathological syndromes associated with B. ceti infection are apparent in some cetacean species (Gonzalez et al. 2002; Hernandez-Mora et al. 2008; Davison et al. 2009; Gonzalez-Barrientos et al. 2010), B. pinnipedialis infections in pinnipeds are not associated with a clear pattern of pathology. Most members of the genus Brucella can infect mammalian species other than their natural host. While disease resulting from infection with marine Brucella has occurred in humans, there are no reports of natural spill-over infections occurring from marine to terrestrial mammals. Experimental infections of sheep and cattle with marine Brucella showed that while these strains have the potential to induce abortion, their ability to infect and cause disease was low (Rhyan et al. 2001; Perrett et al. 2004). There are no reports of Brucella investigations in Sirenians.
World distribution

Marine *Brucella* species have been isolated from numerous Northern Hemisphere marine mammals (Ross et al. 1994; Maratea et al. 2003). Outside Australia, there is serological evidence of exposure to *Brucella* in Southern Hemisphere cetaceans and pinnipeds (Blank et al. 2002; Dawson 2005; Abalos et al. 2009), with detection of *Brucella* sp. only from a small number of cetaceans. Isolates from humans with severe brucellosis, who were resident in South America and New Zealand, were characterized as marine mammal types (Sohn et al. 2003; McDonald et al. 2006; Dawson et al. 2008b).

Occurrences in Australia

There have been very few demonstrated cases of brucellosis in marine mammals from Australian waters. There is a report of brucellosis in a late-term foetus of an Indo-Pacific bottle-nosed dolphin (*Tursiops aduncus*) aborted in Australia. *Brucella ceti* was cultured from spleen, kidney and liver. Histopathology showed mild placentitis and encephalitis (Mackie et al. 2020). There is molecular (PCR) evidence of *Brucella* infection from one wild short-beaked common dolphin (*Delphinus delphis*) from Port Campbell, western Victoria. The animal presented dead from trauma but incidental post-mortem findings included moderate, chronic necro-suppurative pneumonia with intralesional nematode parasites (most likely *Halocercus* spp.). There was a positive PCR result for *Brucella* sp. from lung tissue. The species of *Brucella* was not able to be identified by sequencing, however is thought most likely to be *B. ceti* (WHA 2019). There is serological evidence of exposure in a number of Australian marine mammal species (see World Distribution, above, and Epidemiology below).

Epidemiology

The epidemiological parameters for *Brucella* infections in marine mammals are largely unknown, particularly for cetacean species. The relationship between antibody prevalence and the incidence of active infection and disease is not established and likely to vary between species. Australian fur seals were found to have high (>50%) antibody prevalence to *Brucella* but no microbiological or molecular evidence of infection was found in post-mortem specimens (Lynch et al. 2011a). New Zealand fur seals from Kangaroo Island, SA were found to have a low (<10%) *Brucella* antibody prevalence and have not been investigated further for infection (Lynch, unpublished data). In cetacean species, however, it may be that positive antibody status is indicative of a high probability of active infection and disease (Gonzalez-Barrientos et al. 2010). The routes of transmission of marine *Brucella* have not been definitively established. Isolation of *Brucella* from the reproductive tract of cetaceans suggests that, as in terrestrial mammals, infection may be transmitted by the venereal route (Dagleish et al. 2008). Parasitic carriage has also been suggested as a means of infection as *Brucella* has been isolated from lungworms from both cetaceans and pinnipeds (Garner et al. 1997; Dawson et al. 2008a). Ingestion of infected prey items may be significant (El-Tras et al. 2010). Direct transmission by bites from fighting is likely as *Brucella* has been isolated from subcutaneous abscesses of marine mammals (Foster et al. 2002). In addition, pinnipeds congregating on land would provide a situation where respiratory transmission may occur.

Clinical signs

Marine mammals carrying *Brucella* may not show any clinical signs. Stranded odontocyttes and those displaying abnormal swimming patterns indicative of neurological illness have been found to be suffering
from meningoencephalitis caused by \textit{B. ceti} infection (Hernandez-Mora et al. 2008). Marine mammals with active \textit{Brucella} infection may present in poor body condition and in pinnipeds, respiratory signs can predominate due to \textit{Brucella}-associated bronchopneumonia (Prenger-Berlinghoff et al. 2008). \textit{Brucella} infection may be associated with stillbirth and abortion (Mackie et al. 2020)

Diagnosis

Exposure to \textit{Brucella} is indicated by the presence of antibodies using serological tests developed in cattle (Nielsen et al. 2005). Definitive diagnosis of \textit{Brucella} infection is by isolation of the organism from tissues using specific culture techniques. Isolation of the organism can be difficult in marine mammals (Blyde 2019). In addition fresh or frozen tissue samples may be examined for evidence of infection by \textit{Brucella}-specific PCR (Lynch et al. 2011a). Immunohistochemistry has also been used in \textit{Brucella} investigations in marine mammals (Gonzalez-Barrientos et al. 2010)

Pathology

\textit{Brucella} infection in cetaceans can cause meningoencephalitis characterised by perivascular, mononuclear infiltration of the white and grey matter of the cerebrum, cerebellum and brainstem (Hernandez-Mora et al. 2008). Some cetaceans with disseminated infections may also display fibrinopurulent osteoarthritis (Dagleish et al. 2008), nonsuppurative interstitial pneumonia and endocarditis (Gonzalez-Barrientos et al. 2010). Reproductive tract lesions in cetaceans include placentitis characterised by necrosis and mixed inflammatory infiltrates (Miller et al. 1999), orchitis, and epididymitis (Foster et al. 2002; Dagleish et al. 2008). In seals, \textit{Brucella} has been most commonly associated with bronchopneumonia (Prenger-Berlinghoff et al. 2008) although it has been suggested as a cause of abortion (Goldstein et al. 2009). In both cetaceans and pinnipeds, \textit{Brucella} has been isolated from subcutaneous abscesses (Foster et al. 2002). The case in the aborted dolphin foetus in Australia showed placentitis and encephalitis. The incidental finding in the dead dolphin in Victoria was associated with pneumonia, which may have been a result of parasitic infection.

Differential diagnoses

Encephalitis in cetaceans may be caused by numerous pathogens including morbilliviruses and \textit{Toxoplasma gondii} (Domingo et al. 1992; Dubey et al. 2007). However, the histological lesions produced by \textit{Brucella} infection are distinct and isolation of the organism provides a definitive diagnosis. Bronchopneumonia in pinnipeds often results from lungworm infection particularly in the juvenile age class. Infectious causes of abortion in pinnipeds include influenza viruses, leptospirosis and mycoplasmas (Smith et al. 1974; Geraci et al. 1982; Lynch et al. 2011b).

Laboratory diagnostic specimens & procedures

Marine mammals suspected of brucellosis should have the following samples collected:

- Serum (frozen): Serological testing
- Cerebrospinal fluid: \textit{Brucella}-specific culture
- Fresh tissues, brain, lung, lymph node, placenta, abscess material: \textit{Brucella}-specific culture
- Impression smears: Cytology & possible immunohistochemistry
- Tissues in formalin: Histological examination
- Frozen tissues: Molecular diagnostics
Tissues should include brain, lung, mediastinal lymph node, placenta, mesenteric lymph node, heart and spleen.

Treatment

Given the lack of knowledge concerning brucellosis in marine mammals in Australasia, animals suspected of severe or disseminated brucellosis should be euthanatized and thoroughly investigated. It may be reasonable to treat individuals presenting with subcutaneous abscessation from which *Brucella* is isolated. In these cases, drainage and flushing of the abscess site would be the foundation of treatment.

Prevention and control

Exposure to infected animals poses a risk to humans. Prevention of human infection is by identification of at risk groups and adoption of appropriate personal protection measures (see below). Cattle are unlikely to become infected with *Brucella* from marine mammal sources. Marine mammal *Brucella* has been shown to be of low infectivity for cattle and sheep (Rhyan et al. 2001; Perrett et al. 2004) and opportunities for interaction between cattle and potentially infected marine mammals are limited. *Brucella* may be considered as a biosecurity issue when introducing new animals to captive marine mammal collections. However, the lack of knowledge of the relationship between antibody status and active infection presents difficulty in using serological testing as a determining quarantine procedure. *Brucella* species are sensitive to most antiseptics and washing of hands with chlorhexidine gluconate and chemical sterilisation of equipment should be practiced as a minimum standard after handling free-ranging marine mammals.

Surveillance and management

Wildlife disease surveillance in Australia is coordinated by the Wildlife Health Australia. The National Wildlife Health Information System (eWHIS) captures information from a variety of sources including Australian government agencies, zoo and wildlife parks, wildlife carers, universities and members of the public. Coordinators in each of Australia’s States and Territories report monthly on significant wildlife cases identified in their jurisdictions. *Brucella* species are included in this list.

Statistics

There are very few reports of clinical brucellosis in marine mammals in Australia in the national wildlife health information system (www.wildlifehealthaustralia.com.au). NOTE: access to information contained within the National Wildlife Health Information System dataset is by application. See the WHA website for more information:

Research

Work is needed to establish how widely brucellosis present in Australian cetaceans as most *Brucella*-related pathology in marine mammals has been reported from cetacean species. Diagnosis of brucellosis requires specific culture and molecular techniques. Post-mortem investigations of stranded cetaceans in Australasia should include sampling and testing for brucellosis.
There is an ongoing need to collect serological data from Australian marine mammals regarding exposure to Brucella. Serological data would provide information as to species, age, spatial and temporal differences in exposure to Brucella and help elicit the epidemiology of this potential pathogen.

Human health implications

Serological data suggests that marine Brucella species have a world-wide distribution and two cases of severe human brucellosis are known from the southern hemisphere (Sohn et al. 2003; McDonald et al. 2006). Groups at most risk of acquiring Brucella infection from marine mammals are those that have close contact with infected animals. Such groups include staff working in facilities holding captive marine mammals particularly those that accept wild individuals for treatment and rehabilitation. Other groups potentially at risk are research scientists, wildlife officers and members of the public and wildlife carer groups who assist at marine mammal strandings. Appropriate personal protection (gloves, protective clothing and mask) should be employed when conducting post mortem examinations on pinnipeds.

Conclusions

Marine strains of Brucella are recognised to have a wide-spread distribution and are important pathogens of some cetacean species in addition to being potential zoonoses. Knowledge of the exposure status of Australian marine mammals to these Brucella strains is incomplete. It is known that some pinniped populations have been exposed to an unidentified strain of Brucella and rare cases of infection are reported in cetaceans from Australian waters. The prevalence of active infection in all Australian marine mammal species is unknown. Experimental studies and epidemiological information suggest that spill over of marine brucellosis to cattle is unlikely. Marine Brucella strains are capable of infecting humans so appropriate protective measures should be adopted by those at risk of infection.

References and other information

Acknowledgements

We are extremely grateful to the many people who had input into this fact sheet. Without their ongoing support production of these fact sheets would not be possible.

Updated: Mar 2020
To provide feedback on this fact sheet

We are interested in hearing from anyone with information on this condition in Australia, including laboratory reports, historical datasets or survey results that could be added to the National Wildlife Health Information System. If you can help, please contact us at admin@wildlifehealthaustralia.com.au.

Wildlife Health Australia would be very grateful for any feedback on this fact sheet. Please provide detailed comments or suggestions to admin@wildlifehealthaustralia.com.au. We would also like to hear from you if you have a particular area of expertise and would like to produce a fact sheet (or sheets) for the network (or update current sheets). A small amount of funding is available to facilitate this.

Disclaimer

This fact sheet is managed by Wildlife Health Australia for information purposes only. Information contained in it is drawn from a variety of sources external to Wildlife Health Australia. Although reasonable care was taken in its preparation, Wildlife Health Australia does not guarantee or warrant the accuracy, reliability, completeness, or currency of the information or its usefulness in achieving any purpose. It should not be relied on in place of professional veterinary or medical consultation.

To the fullest extent permitted by law, Wildlife Health Australia will not be liable for any loss, damage, cost or expense incurred in or arising by reason of any person relying on information in this fact sheet. Persons should accordingly make and rely on their own assessments and enquiries to verify the accuracy of the information provided.