

ABLV BAT STATS

Australian Bat Lyssavirus Report - December 2025

Cases of ABLV infection - January to December 2025

There were 15 cases of Australian bat lyssavirus (ABLV) infection reported in bats in Australia between January and December 2025. This includes 9 from Queensland and two each from New South Wales, Northern Territory and Victoria (Table 1).

Queensland

In the first half of the year, ABLV was detected in four black flying-foxes, two little red flying-foxes and a yellow-bellied sheathtail bat, as reported in the [June 2025 edition of Bat Stats](#). In the second half of the year a grey-headed flying-fox with aggressive behaviour and paralysis and a very decomposed black flying-fox that was found being eaten by two pet dogs tested positive for ABLV.

New South Wales

Two grey-headed flying-foxes tested positive for ABLV in NSW in 2025, the first of which was reported in [Bat Stats June 2025](#). The second flying-fox was found on the roadside and was suspected to have come into contact with electrical wires. The bat showed neurological signs including altered mentation and paresis of one wing.

Northern Territory

Two little red flying-foxes tested positive for ABLV in the Northern Territory in 2025. The first was euthanased after showing neurological signs including inability to move, dysphagia (difficulty swallowing) and paresis. The second was also euthanased after showing nystagmus and twitching. Positive ABLV detections in bats in the Northern Territory are infrequent, with only 7 cases previously reported.

Little red flying fox
Photo: Geoff Whalan via Flickr (CC)

Table 1: ABLV infection in Australian bats[^]

YEAR	NSW	NT	QLD	VIC	WA	SA	Total
1995 - 2000	10	1	83 ^{#*}	0	0	0	94
2001	0	0	9	1	4	0	14
2002	4	0	10	2	1	0	17
2003	5	0	3	2	0	0	10
2004	5	0	6	1	0	0	12
2005	6	0	5	0	0	0	11
2006	2	0	4	0	0	0	6
2007	6	0	2	0	0	0	8
2008	0	0	0	0	0	0	0
2009	2	0	8	0	0	0	10
2010	0	0	8	0	1	0	9
2011	0	0	4	2	0	0	6
2012	1	0	3	0	0	1	5
2013	3	0	11	0	0	0	14
2014	5	1	14	1	11	0	32
2015	10	1	11	0	0	0	22
2016	5	1	8	1	0	0	15
2017	4	0	19	3	2	0	28
2018	5	0	5	1	0	0	11
2019	6	0	1	0	0	0	7
2020	5	0	9	4	0	0	18
2021	10	1	17	5	0	2	35
2022	1	1	8	1	0	1	12
2023	1	1	11	1	0	5	19
2024	2	0	3	0	0	3	8
2025	2	2	9	2	0	0	15
Total	100	9	271	27	19	12	438

[^] Infection confirmed by FAT, PCR, IHC and/or virus isolation. ACT and TAS have not recorded any cases of ABLV infection that satisfy this case definition.

[#] A BFF from QLD was diagnosed retrospectively in 1996, when ABLV was first recognised.

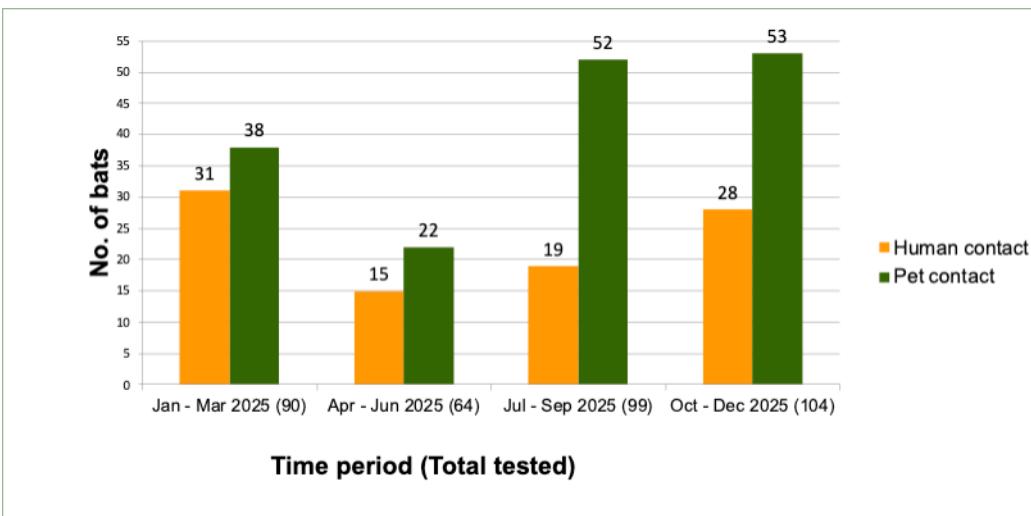

^{*} Higher numbers of ABLV infected bats were associated with peak years of testing in 1997-1998.

Victoria

A grey-headed flying-fox rescued from a fence during a heat stress event displayed neurological signs including excessive licking, hyperactivity and miotic (constricted) pupils. The bat died and tested positive for ABLV. A second grey-headed flying-fox also rescued by a wildlife rehabilitator presented with severe dehydration as well as neurological signs such as dysphagia, abnormal vocalisation, shaking and biting towels, and tested positive for ABLV.

Human contact

Potentially infectious contact with humans was reported for two of the ABLV infected flying-foxes in the first half of the year and clinical advice was provided by an experienced public health official for both cases. No potentially infectious contact with humans was reported for any of the ABLV infected bats in the second half of the year.



Grey headed flying-fox
Photo: Curtis Foreman via Flickr (CC)

Why are bats submitted for ABLV testing?

Bats are submitted for ABLV testing for a variety of reasons. A common reason is contact between the bat and a person with the potential for ABLV transmission (e.g. a bite or scratch). Bats are also regularly submitted following contact with a pet dog or cat (Figure 1). Bats displaying unusual or aggressive behaviour or other neurological signs may be tested; these signs can occur with ABLV infection but can also be due to a number of other diseases. Bats that show other clinical signs e.g. respiratory signs, bats that die or are euthanased due to trauma, and bats that are found dead may also be submitted for testing.

Figure 1: ABLV tested bats – Contact with people and pets

Figure 1 presents reported human-bat contacts which, based on Young & McCall 2010,¹ is an underestimate of the true contact frequency. Not all bat contact is reported, and for the majority of reports the bat is not available for testing.

If bats had both human and pet contact, they are only reported as human contact in the figure.

ABLV prevalence in bats and public health significance

There are no recent surveys on the prevalence of ABLV infection in wild bats. Surveys of wild-caught bats in the early 2000s indicated an ABLV prevalence in the wild bat population of less than 1%.² ABLV infection is more common in sick, injured and orphaned bats, especially those with neurological signs.³ People are more likely to have contact with bats that are unwell or debilitated, as these bats may be found on or near the ground.⁴

Lesser long-eared bat
Photo: Matt Clancy via Wikimedia (CC)

ABLV infection causes a range of clinical signs in bats, which can include abnormal behaviour such as uncharacteristic aggression, paralysis or paresis, and seizures. The behavioural changes may increase the likelihood of a person or pet being bitten or scratched when coming in contact with the bat. The likelihood of a person developing ABLV disease from contact with a bat is influenced by a number of factors including whether the bat was ABLV-infected, the type of contact e.g. bite or scratch, the vaccination status of the person, and whether the person sought medical attention.

ABLV prevalence in bats submitted for testing

Some of the bats that come into contact with people or pets are tested for ABLV. The percentage of ABLV infection in bats submitted for testing is of interest as an indicator of public exposure, however it is also heavily influenced by factors affecting which bats are submitted for testing. Each state and territory in Australia determines independently what bats are submitted for ABLV testing and this process may vary between jurisdictions.

A total of 357 bats were tested for ABLV in Australia between January and December 2025 (Table 2). This is a decrease in the number of bats tested compared to the same period in 2024 (425 bats) and is the lowest number of bats tested since 2022. There were 15 cases of ABLV infection reported (4.2% of the bats submitted for testing) (Table 3). Fourteen detections were in flying-foxes (5.1% of flying-foxes tested), and 1 was in a microbat (1.2% of microbats tested). As described above, testing of unwell bats is not representative of the whole bat population; consequently these results over-estimate the level of ABLV infection in the wider bat population.

Table 2: ABLV testing by bat species (Jan - Dec 2025)

Species	No. tested	No. ABLV infected
Flying-foxes, blossom & tube-nosed bats		
<i>Pteropus poliocephalus</i> /Grey-headed Flying-fox	135	5
<i>Pteropus alecto</i> /Black Flying-fox	111	5
<i>Pteropus scapulatus</i> /Little Red Flying-fox	21	4
<i>Pteropus</i> spp.	6	0
<i>Pteropus conspicillatus</i> /Spectacled Flying-fox	2	0
<i>Syconycteris australis</i> /Eastern blossom bat	1	0
Insectivorous bats (microbats)		
<i>Chalinolobus gouldii</i> /Gould's Wattled Bat	9	0
<i>Vespertilionidae</i> spp.	5	0
<i>Chalinolobus morio</i> /Chocolate Wattled Bat	3	0
<i>Vespadelus vulturnus</i> /Little Forest Bat	3	0
<i>Nyctophilus arnhemensis</i> /Arnhem Long-eared Bat	3	0
<i>Nyctophilus</i> spp.	2	0
<i>Nyctophilus geoffroyi</i> /Lesser Long-eared Bat	2	0
<i>Nyctophilus gouldii</i> /Gould's Long-Eared Bat	2	0
<i>Saccopteryx flaviventris</i> /Yellow-bellied sheathtail bat	2	1
<i>Molossidae</i> spp.	2	0
<i>Rhinolophidae</i> spp.	1	0
<i>Vespadelus</i> spp.	1	0
<i>Macroderma gigas</i> /Ghost bat	1	0
Mircobat; species not identified	45	0
TOTAL	357	15

*ABLV Bat Stats is published twice a year. The June issue presents data from the 6 month period of January to June. The December issue presents 12 months of data for the calendar year.

Grey headed flying fox
Photo: Paisley Hadley via Flickr (CC)

Eastern blossom bat
Photo: Hans and Judy Beste © Australian Museum

Table 3: ABLV infection (%) in bats submitted for testing (Jan - Dec 2025)

	No. tested	No. infected	% infected ⁺
Flying-foxes	276	14	5.1%
Microbats	81	1	1.2%
TOTAL	357	15	4.2%

⁺ This figure represents the percentage of ABLV infection in the bats tested. The level of ABLV infection in the wider bat population is estimated to be significantly lower.

Bat facts

- ✿ **ABLV is a virus** that infects Australian flying-foxes and insectivorous bats.
- ✿ **ABLV is closely related to**, but distinct from rabies virus.
- ✿ **ABLV can infect people and other mammals with a fatal outcome.** ABLV infection has led to the deaths of three people, two horses and many bats in Australia.
- ✿ **Community members should not handle bats.** If you find an injured or sick bat, contact a wildlife rehabilitation organisation or your local veterinarian.
- ✿ People trained in the care of bats **should be vaccinated and always use appropriate protection** when interacting with bats.
- ✿ **ABLV is transmitted** by the saliva of an infected animal introduced via a bite or scratch, or by contamination of mucous membranes or broken skin. In the event of a bat bite, scratch or other significant contact, IMMEDIATELY wash wounds thoroughly with soap and copious water for 15 minutes, apply a virucidal antiseptic such as an iodine-based antiseptic and allow antiseptic to dry. Bat saliva in the eyes or mouth should be rinsed out immediately and thoroughly with water. In the event of any exposure, regardless of any previous vaccination, **seek medical attention URGENTLY**.
- ✿ **For more information** contact your local Public Health agency for advice.
- ✿ **ABLV can also be transmitted to other mammals.** Prevent pets and other animals from coming into contact with bats. If an animal might have been bitten or scratched by a bat, **seek urgent veterinary advice**.
- ✿ ABLV is a nationally notifiable disease in Australia. **If you suspect a bat is infected with ABLV** contact your department of agriculture or primary industries, or call the Emergency Animal Disease Hotline on 1800 675 888.
- ✿ **Where to find more information:** See page 5 & 6.

*Australian Centre for Disease Control. Rabies Virus and Other Lyssavirus (including Australian Bat Lyssavirus) Exposures and Infections. CDNA National Guidelines for Public Health Units. Canberra. 2025. Available from <https://www.cdc.gov.au/resources/publications/rabies-and-other-lyssavirus-cdna-national-guidelines-public-health-units>

Clinical signs of ABLV

An ABLV infected bat may display any of these clinical signs:

- Abnormal behaviour such as excitation / agitation / aggression
- Paralysis or paresis
- Unprovoked attacks
- Unusual vocalisation
- Inability to fly
- Convulsions / seizures / tremors

Apparently healthy bats with normal behaviours may still be infected with ABLV

DO NOT ATTEMPT TO HANDLE an injured, unwell or aggressive bat

REPORT it to your local wildlife rehabilitation group or vet.

Gould's long eared bat
Photo: © Lindy Lumsden

Recent news and publications

Warning over rare but deadly virus after bat bites Pilbara woman

October: "People in WA's north are being warned to leave bats alone after some recent reports of bites. A Pilbara resident said she did not realise how serious a bat bite could be until doctors told her she would need to be treated for lyssavirus. Bat lyssavirus is found in a small proportion of the Pilbara's bat population but can be deadly. Anyone bitten by a bat is advised to seek urgent medical attention. Karratha resident Elizabeth Heseltine said she was trying to get a bat out of her house when she was bitten..." [ABC News](#)

Early flying fox influx sees WIRES rescues surge

November: "Flying foxes returned to Eurobodalla weeks ahead of their usual schedule this year. Eurobodalla Council's natural resources officer India Howlett says that may be due to many reasons, including dry spring conditions along much of the coast. 'With less forest flowers currently blooming, we expect more of the bats to follow their nose into gardens seeking food. For residents protecting their fruit trees, it's essential they use wildlife-friendly netting' Ms Howlett says..." [Eurobodalla Shire Council](#)

Queenslanders urged to stay away from bats

December: "With summer heat and storm season underway, distressed or dead bats may be found on the ground – and Queensland Health is reminding people not to touch them under any circumstances. Bats can carry Australian bat lyssavirus (ABLV)... Very hot temperatures or a mix of heat and humidity can cause bats to become heat-stressed and fall to the ground. Storms can also affect bat behaviour – strong winds and severe weather can cause bats to fall from trees or seek shelter closer to the ground, increasing the chance of being found by people. Queensland Health advises people to never attempt to rescue or handle a distressed or dead bat and instead call a trained wildlife rescuer..." [Queensland Health](#)

Queensland to continue to allow farmers to shoot flying foxes after repealing ban

December: The three-year phaseout period for the shooting of flying-foxes in Queensland that was due to end 1 July 2026 has been repealed. Permits will continue to be issued to farmers to shoot flying-foxes for crop protection. [Qld Department of the Environment, Tourism, Science and Innovation](#) This legislation change was also reported in the media ([The Guardian](#))

Little forest bat
Photo: © Lindy Lumsden

Are you interested in bat health?

Eastern blossom bat
Photo: © Lindy Lumsden

Wildlife Health Australia collates recent media articles and publications relating to bat health into a monthly 'Bat News' email. If you would like to receive the monthly email, please contact WHA: admin@wildlifehealthaustralia.com.au

Where to find information

Wildlife Health Australia (WHA)

www.wildlifehealthaustralia.com.au

- Wildlife disease fact sheets, including [Australian Bat Lyssavirus](#) and [Zoonoses in Australian Bats](#)
- Links: WHA Bat Health Page - <https://wildlifehealthaustralia.com.au/Resource-Centre/Bat-Health>

State/Territory departments of agriculture, health and environment

For links to agency websites see:

[State/ Territory Australian Bat Lyssavirus Resources](#)

Commonwealth Department of Health and Aged Care

- Healthdirect ABLV information and resources: <https://www.healthdirect.gov.au/australian-bat-lyssavirus-infection>
- For current information for medical professionals, see the Series of National Guidelines on Rabies & ABLV: <https://www.cdc.gov.au/resources/publications/rabies-and-other-lyssavirus-cdna-national-guidelines-public-health-units>
- For vaccination information contact your local or regional Public Health Unit, or see the immunisation handbook: <https://immunisationhandbook.health.gov.au/contents/vaccine-preventable-diseases/rabies-and-other-lyssaviruses>

AUSVETPLAN

For current policy on surveillance and management see AUSVETPLAN - Lyssaviruses:

https://animalhealthaustralia.com.au/wp-content/uploads/dlm_uploads/2021/05/AUSVETPLAN-ResponseStrategy_Lyssaviruses-1.pdf

ABLV BAT STATS

WHA Bat Health Focus Group

This document has been approved by the Wildlife Health Australia (WHA) Bat Health Focus Group. Using a collaborative One Health approach, the Bat Health Focus Group considers bat health issues in relation to the broader context of biosecurity, public health, livestock health and environmental impacts in Australia. Members come from organisations including Australian and State Government departments of agriculture, public health and environment; CSIRO Australian Centre for Disease Preparedness, universities, the Australasian Bat Society and the Australian Speleological Federation. Members include veterinarians, biologists, ecologists, virologists, epidemiologists and wildlife/bat carers.

Information sources

This report presents the latest information on ABLV testing across Australia. Information has been made available by CSIRO Australian Centre for Disease Preparedness, Janine Barrett PhD thesis 2004 (with permission), QLD Health, zoo & wildlife veterinarians, universities, Wildlife Health Australia members, and State/Territory WHA Coordinators (representatives of Chief Veterinary Officers), and is collated by Wildlife Health Australia. More detailed information is available in the electronic Wildlife Health Information System ([eWHIS](#)).

References

- ¹ Young MK & McCall BJ (2010). Potential exposure to Australian bat lyssavirus in South East Queensland: What has changed in 12 years? *Comm Dis Intell*, 34(3), 334-8 www1.health.gov.au/internet/main/publishing.nsf/Content/cda-cdi3403l.htm
- ² Field HE (2005). The Ecology of Hendra virus and Australian bat lyssavirus, PhD thesis, The University of Queensland <https://espace.library.uq.edu.au/view/UQ:13859>
- ³ Barrett J (2004). Australian Bat Lyssavirus, PhD thesis, The University of Queensland <https://espace.library.uq.edu.au/view/UQ:9486>
- ⁴ McCall B, Field HE, Smith GA, Storie GJ, Harrower BJ (2005). Defining the risk of human exposure to Australian bat lyssavirus through potential non-bat animal infection. *Comm Dis Intell*, 29(2), 200-203 www1.health.gov.au/internet/main/publishing.nsf/Content/cda-cdi2902k.htm

State/Territory WHA Coordinators

Contact your state/territory department of primary industries/agriculture or WHA Coordinator for more information on ABLV testing, or to report a suspected ABLV infected bat.

Click the below link to find your state or territory WHA Coordinator contact details:
<https://wildlifehealthaustralia.com.au/Incidents/WHA-Coordinator-Contacts>

Wildlife Health Australia

Phone: (02) 9960 6333
email: admin@wildlifehealthaustralia.com.au
www.wildlifehealthaustralia.com.au